If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4n^2-18n=0
a = 4; b = -18; c = 0;
Δ = b2-4ac
Δ = -182-4·4·0
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-18}{2*4}=\frac{0}{8} =0 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+18}{2*4}=\frac{36}{8} =4+1/2 $
| 9x-(2x+5)=4x+(2x-8) | | x*54=24x+240 | | 23=4u–6u+1 | | 650/6.5=5/x | | 18-4n=8-2(1+8n)= | | (3x+1)(1-3x)+2(1-3x)=(x-1) | | 2.75=n | | 8(2d-3)=(4d-7) | | 2x+27/3=9+x | | 2x+12+3x-47=180 | | (r+8)+r=34 | | 9x^2+7x-31=0 | | 5x+3=6+15x | | 18+4+m=(5-3)m | | 2800x^-2=0 | | 5x-6/11=x-7/9 | | 5(x+3)=2(2x-3) | | 15x-6/11=x-7/9 | | 3w-3=5w-13 | | 3=x÷12 | | 3x7+6÷2=30 | | h²+5h=24 | | 5(17)-38+90+7y-20=180 | | (8x-10)=3(4x-5) | | 8x-5-2x=10x+35 | | 5(w+6)-8w=21 | | 4h+350=3h+3*2 | | 27=9+3v | | 44-x*x*x=11 | | 3x+4=x-2+4x | | 5+30x=4(3+4x) | | x-8.4=-14.2 |